Personal Protection Equipment

Suppliers of all types of PPE equipment:

  • Nitrile gloves
  • Face masks
  • Face shields

For information and quotes please contact us

Personal protective equipment (PPE) is protective clothinghelmetsgoggles, or other garments or equipment designed to protect the wearer’s body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemicals, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. “Protective clothing” is applied to traditional categories of clothing, and “protective gear” applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

The purpose of personal protective equipment is to reduce employee exposure to hazards when engineering controls and administrative controls are not feasible or effective to reduce these risks to acceptable levels. PPE is needed when there are hazards present. PPE has the serious limitation that it does not eliminate the hazard at the source and may result in employees being exposed to the hazard if the equipment fails.[1]

Any item of PPE imposes a barrier between the wearer/user and the working environment. This can create additional strains on the wearer; impair their ability to carry out their work and create significant levels of discomfort. Any of these can discourage wearers from using PPE correctly, therefore placing them at risk of injury, ill-health or, under extreme circumstances, death. Good ergonomic design can help to minimise these barriers and can therefore help to ensure safe and healthy working conditions through the correct use of PPE.

Practices of occupational safety and health can use hazard controls and interventions to mitigate workplace hazards, which pose a threat to the safety and quality of life of workers. The hierarchy of hazard controls provides a policy framework which ranks the types of hazard controls in terms of absolute risk reduction. At the top of the hierarchy are elimination and substitution, which remove the hazard entirely or replace the hazard with a safer alternative. If elimination or substitution measures cannot apply, engineering controls and administrative controls, which seek to design safer mechanisms and coach safer human behavior, are implemented. Personal protective equipment ranks last on the hierarchy of controls, as the workers are regularly exposed to the hazard, with a barrier of protection. The hierarchy of controls is important in acknowledging that, while personal protective equipment has tremendous utility, it is not the desired mechanism of control in terms of worker safety.

 

Skin protection

A man wearing a white lab coat reaches over a beaker containing white powder on a balance

A closeup of a person's arm requing into a bucket filled with a black material

This is an incorrect use of personal protective equipment, because the gap between the glove and the lab coat exposes the wrist to hazardous materials.

Occupational skin diseases such as contact dermatitisskin cancers, and other skin injuries and infections are the second-most common type of occupational disease and can be very costly.[10] Skin hazards, which lead to occupational skin disease, can be classified into four groups. Chemical agents can come into contact with the skin through direct contact with contaminated surfaces, deposition of aerosols, immersion or splashes. Physical agents such as extreme temperatures and ultraviolet or solar radiation can be damaging to the skin over prolonged exposure.[10] Mechanical trauma occurs in the form of friction, pressure, abrasions, lacerations and contusions. Biological agents such as parasites, microorganisms, plants and animals can have varied effects when exposed to the skin. 

Any form of PPE that acts as a barrier between the skin and the agent of exposure can be considered skin protection. Because much work is done with the hands, gloves are an essential item in providing skin protection. Some examples of gloves commonly used as PPE include rubber glovescut-resistant gloveschainsaw gloves and heat-resistant gloves. For sports and other recreational activities, many different gloves are used for protection, generally against mechanical trauma.

Other than gloves, any other article of clothing or protection worn for a purpose serve to protect the skin. Lab coats for example, are worn to protect against potential splashes of chemicals. Face shields serve to protect one’s face from potential impact hazards, chemical splashes or possible infectious fluid.

Many migrant workers need training in PPE for Heat Related Illnesses prevention (HRI). Based on study results, the research identified some potential gaps in heat safety education. While some farm workers reported receiving limited training on pesticide safety, incoming groups of farmer workers could also receive video and in-person training on HRI prevention. These educational programs for farm workers are most effective then they are based on health behavior theories, use adult learning principles and employ train-the-trainer approaches.

Eye protection

A paintball player wearing appropriate eye protection against impact.

Each day, about 2000 US workers have a job-related eye injury that requires medical attention. Eye injuries can happen through a variety of means. Most eye injuries occur when solid particles such as metal slivers, wood chips, sand or cement chips get into the eye. Smaller particles in smokes and larger particles such as broken glass also account for particulate matter-causing eye injuries. Blunt force trauma can occur to the eye when excessive force comes into contact with the eye. Chemical burns, biological agents, and thermal agents, from sources such as welding torches and UV light, also contribute to occupational eye injury.

While the required eye protection varies by occupation, the safety provided can be generalized. Safety glasses provide protection from external debris, and should provide side protection via a wrap-around design or side shields.[13]

  • Goggles provide better protection than safety glasses, and are effective in preventing eye injury from chemical splashes, impact, dusty environments and welding. Goggles with high air flow should be used to prevent fogging.
  • Face shields provide additional protection and are worn over the standard eyewear; they also provide protection from impact, chemical, and blood-borne hazards.[13]
  • Full-facepiece respirators are considered the best form of eye protection when respiratory protection is needed as well, but may be less effective against potential impact hazards to the eye.
  • Eye protection for welding is shaded to different degrees, depending on the specific operation.